How to Prevent the Damage of ITO Exposure?

What is indium tin oxide

Indium Tin Oxide, or ITO, is a composition of indium, tin, and oxygen with different proportions. ITO is mainly used in the production of liquid crystal displays (LEDs), flat panel displays, plasma displays, touch displays, electronic paper applications, organic light-emitting diodes, and solar cells, and antistatic coatings as well as EMI shielding transparent conductive coating. The indium tin oxide film is typically deposited onto the surface physical vapor deposition, such as vacuum sputtering, or electron beam evaporation. Other uses for indium include: indium bonding, vehicle and aircraft bearings, cryogenic alloys and solders, and nuclear reactor control rods.

indium tin oxide film-12

ITO dust hazard

In the ITO sputtering target manufacturing factory, although the surface grinding and cutting operations are carried out in a closed wet system, droplets and waste water containing indium tin oxide sprayed around the machine are evaporated to dryness, causing the indium tin oxide dust to be suspended in the air. And the inhalation of ITO dust by the human body can cause lung disease.

Protection and precautions

  • Smash, grind, cut and sputter targets and backplate bonding areas shall have adequate and appropriate exhaust equipment.
  • During work, workers are advised to wear appropriate dust masks to avoid inhalation of indium, indium tin oxide and indium compound particles and fumes.

mask should be used in the area

  • Use appropriate eye and hand protection to prevent dust particles from splashing or touching.
  • Work clothes or dust-proof clothes should be used during work. Before going home, you should change clothes to avoid taking dust home, work clothes or dust-proof clothes in the factory.
  • Do not place drinking water and food at the work site to avoid contamination and avoid eating, and avoid eating or resting in the workplace.

The above points are strictly enforced at SAM’s factories, and we have never reported incidents of cancer caused by inhalation of harmful dust.

SAM is the world’s leading sputtering target manufacturer and we provide high-quality products and satisfying service. Please visit for more information.

Requirements of ITO sputtering targets for LCDs

After a long period of development, the quality of liquid crystal displays (LCDs) continues to increase, and the cost continues to decline. This means that LCDs have higher requirements for ITO sputtering targets. Therefore, in order to keep up with the development of LCD, the future development trend of ITO targets is as follows:

Liquid crystal displays
Liquid crystal displays
Lower resistivity

In recent years, liquid crystal displays have been moving in a more and more refined direction, and with the upgrade of drivers, a transparent conductive film with lower resistivity is required. Therefore, the resistivity of their raw material—ITO target—is also required to be lowered.

Increase target density

When the target density is low, the surface area for effective sputtering is reduced, and the sputtering speed is also lowered. The high-density target has uniform surface, and can obtain low-resistance film. In addition, the density of the target is also related to its service life, and the high density target generally has a longer life. This means that increasing the density of the target not only improves the film quality, but also reduces the cost of the coating, so it must be the direction for the future development of ITO targets.

Larger size

Now that the LCD screen is getting bigger and bigger, correspondingly, the size of the ITO target has to be larger. However, there are still many problems to be solved in large area coating. In the past, people weld small targets together and splice them to achieve large area coating. But the joints were likely to cause a drop in coating quality. In order to solve this problem, the size of ITO sputtering target is required to be larger in the future. This is also a big challenge for the ITO target industry.

Higher use ratio

Planar targets are still one of the most used types of sputtering targets. But one of the deadliest disadvantage of planar targets is the low use ratio. People may develop other types of ITO target, such as rotatory targets and cylindrical planar targets in the future to increase target utilization.

Please visit for more information.

What is ITO (indium tin oxide) Sputtering Target?

As its name suggests, ITO sputtering target mainly contains three elements of indium, tin and oxygen. More specifically, ITO sputtering target is a black-gray ceramic semiconductor (as shown below) formed by a series of production processes after indium oxide and tin oxide powder are mixed in a certain ratio, and then sintered in a high temperature atmosphere (1600 degrees, oxygen sintering).


As one of the most widely used transparent conducting oxides, Indium tin oxide (ITO) has good electrical conductivity and optical transparency. The transmittance and resistance of ITO are controlled by the ratio of In2O3 to SnO2, respectively, and the performance is usually best when SnO2:In2O3=1:9. The most common method for preparing ITO films is physical vapor deposition (PVD). To know more information about PVD technology, please read this article What are the uses of PVD (Physical Vapor Deposition) coating. And, to know more about how to produce ITO target, please read another article Four main molding methods for ITO (Indium Tin Oxide) targets.

Continue reading “What is ITO (indium tin oxide) Sputtering Target?”

Working principles of a resistive touch screen and a capacitive touch screen

resistive touch screen and capacitive touch screenResistive screens and capacitive screens are the two main kinds of mobile screens on the market today. Generally speaking, resistive screen phones can be operated with a finger or a stylus; while capacitive screen phones can only be operated with fingers and cannot be operated with ordinary stylus, but we can use a dedicated capacitive screen stylus to substitute the finger to operate; while the resistive screen phone can be operated with a finger or a stylus. Why do they have such a difference? Is it related to their working principle? Let’s SAM Sputter Targets answer it for you.

Continue reading “Working principles of a resistive touch screen and a capacitive touch screen”

What is the difference between a capacitive screen and a resistive screen?

Mobile phones have become an indispensable part of contemporary society. You may use your mobile phone every day, but you don’t know about it. For example, the screens of a mobile phone are mainly divided into a resistive screen and a capacitive screen, but do you know the difference between these two kinds of screens? If you do not know the answer, let’s SAM Sputter Targets answer it for you.


Simply speaking, capacitive screen phones can only be operated with fingers and cannot be operated with ordinary stylus, but we can use a dedicated capacitive screen stylus to substitute the finger to operate; while  resistive screen phones can be operated with a finger or a stylus. From this point of view, some people may think that the latter has an advantage. However, although the capacitive screen can only be operated with a finger, it can largely protect the screen and reduce false touches. Therefore, the two screens actually have their own advantages. Let’s then take a look at their strengths and weaknesses.

Continue reading “What is the difference between a capacitive screen and a resistive screen?”