How was Molybdenum discovered? | History of Molybdenum

The brief history of the discovery of molybdenum

Although molybdenum was discovered in the late 18th century, it was used early before its discovery. For example, in the 14th century, Japan used a molybdenum-containing steel to make a saber. In the 16th century, molybdenite was used as graphite because it was similar to the appearance and properties of lead, galena, and graphite. At that time, Europeans referred to these kinds of molybdenum-containing ore as “molybdenite”.

Bengt Andersson Qvist
Bengt Andersson Qvist

In 1754, the Swedish chemist Bengt Andersson Qvist tested the molybdenite and found that it did not contain lead, so he believed that molybdenite and galena were not the same substance.

In 1778, the Swedish chemist Carl Wilhelm Scheele found that nitric acid did not react with graphite. While nitric acid reacted with molybdenite and produced a white powder, which was boiled together with an alkali solution to crystallize a salt. He believes that this white powder is a kind of metal oxide. After heating with charcoal, no metal is obtained; and when it is heated together with sulfur, the original molybdenite is obtained, so he believes that molybdenite should be an unknown mineral.

Peter Jacob Hjelm

Inspired by Scheler, in 1781, the Swedish chemist Peter Jacob Hjelm used a “carbon reduction method” to separate a new metal from the white powder and named the metal “Molybdenum”.

Molybdenum industry development

Since molybdenum is easily oxidized and has high brittleness, molybdenum smelting and processing are limited. Molybdenum was not able to be machined in the early period, so it is impossible to apply molybdenum to industrial production on a large scale. At that time, only a few molybdenum compounds were used.

In 1891, France’s Schneider Schneider took the lead in the production of molybdenum-containing armor plates using molybdenum as an alloying element. It was found to have superior properties, and the density of molybdenum was only half that of tungsten. Molybdenum gradually replaced tungsten as an alloying element of steel. The application of the molybdenum industry was started.

At the end of the 19th century, it was found that the properties of molybdenum steel were similar to those of tungsten steel of the same composition after the addition of molybdenum in steel. In 1900, the production process of ferromolybdenum was developed. The special properties of molybdenum steel to meet the needs of gun steel materials were also discovered. This made the production of molybdenum steel rapidly developed in 1910. Since then, molybdenum has become an important component of various structural steels that are resistant to heat and corrosion and has also become an important component of non-ferrous metals — nickel and chromium alloys.

This history column aims at introducing the history of different metal elements. If you are a metal lover or history lover, you can follow our website. For previous posts of metal history, you can look them up in the “history” category.

Please visit for more information.

How was cerium discovered? | History of Cerium

Cerium is the most abundant rare earth elements. It is a silvery gray active metal, whose powder is easily oxidized in the air and soluble in acid. Cerium has been widely used in the automotive industry as a catalyst to reduce emission, and in glass industry as glass polishing materials. Cerium sputtering target is an important material in optical coating.

Discovery History

In 1803, when the German chemist Martin Heinrich Klaproth analyzed an ore, he determined the existence of a new metal oxide and called it ochra (ocha-colored soil). and the ore ochroite because it appears to be ochre when burning.

In the same year, the Swedish chemist Jöns Jakob Berzelius and the Swedish mineralogist Wilhelm Hisinger also analyzed the same new metal oxide, which is different from yttrium. Yttrium is dissolved in ammonium carbonate solution and appears red when burning on gas flame. However, this metal oxide is insoluble in ammonium carbonate solution and does not exhibit characteristic flame color when burning.

The ore is thus called ceria (bauxite), and the element is named cerium to commemorate the discovery of an asteroid, Ceres.

Discovery of cerium

Three Early Applications of Cerium

Carl F. Auer von Welsbach
Carl Auer von Welsbach

Eighty-three years after the discovery of “cerium”, in 1886, the Austrian Carl Auer von Welsbach found the first application of cerium (also rare earth) as a luminescent enhancer for steam hoods. He found that heating 99% thorium oxide and 1% cerium oxide would give off a strong light, so cerium used in coal gas lamp gauze can greatly increase the brightness of the gas lamp. The gas lamps in Europe, where electric lights were not yet popular, were the main source of lighting and were essential for industrial production, commerce, and life.

After the First World War, electric lights gradually replaced gas lamps, but cerium continued to open up new applications. In 1903, Welsbach once again discovered the second largest use of cerium. He found that cerium iron alloys can generate sparks under mechanical friction and therefore can be used to make flints. This classic use of cerium has been around for 100 years. Everyone who smokes knows that a lighter uses a flintstone, but many people they that it is cerium that brings fire to people.

cerium arc carbon rods
cerium arc carbon rods

In 1910, the third important application of cerium was discovered for arc carbon rods in searchlights and film projectors. Similar to the steam cover, cerium can improve the efficiency of visible light conversion. Searchlights were once an important tool in war air defense. Arc carbon rods have also been an indispensable source of light for filming.

Modern Applications of Cerium

Since the 1930s, cerium oxide has been used as a glass decolorizer, clarifier, colorant, and abrasive polishing agent.

As a chemical decolorizer and clarifier, cerium oxide can replace the highly toxic white magnetic (oxidation) to reduce operational and environmental pollution.

The use of cerium titanium yellow pigment as a glass colorant produces a beautiful bright yellow art glass.

Cerium oxide as a main component to manufacture various specifications of polishing powder has completely replaced iron red polishing powder, greatly improving polishing efficiency and polishing quality.

As a glass additive, cerium can absorb ultraviolet light and infrared rays and thus has been widely used in automotive glass. It not only protects against UV rays but also reduces the temperature inside the car, thus saving air conditioning power.

cerium polishing powder
cerium polishing powder

This history column aims at introducing the history of different metal elements. If you are a metal lover or history lover, you can follow our website. For previous posts of metal history, you can look them up in the “history” category.

Please visit for more information.

How was tantalum discovered? | History of Tantalum

In the middle of the 17th century, a very heavy black mineral (density of SAM®Tantalum is 16.68 g/cm3) found in North America was sent to the British Museum for safekeeping. After about 150 years, in 1801, British chemist Charles Hatchett accepted the ore analysis task from the British Museum. He discovered a new element and named it Columbium (later renamed Niobium) to in honor of the place where the mineral was first discovered – Colombia.


In 1802, when the Swedish chemist Anders Gustaf Ekberg analyzed their minerals (the niobium-tantalum ore) in Scandinavia, he discovered a new element. He named it Tantalum, referring to the name of Tantalus, the son of Zeus God in Greek mythology.

Because Niobium and Tantalum are very similar properties, they were once thought to be the same element. In 1809, the British chemist William Hyde Wollaston compared the Niobium oxide and Tantalum oxide. Although they gave different density values, he still believed that the two were identical substances.

Tantalum Discovery History

By 1844, the German chemist Heinrich Rose refuted the conclusion that Niobium and Tantalum were the same elements, and proved that they are two different elements through chemical experiment. He named the two elements “Niobium” and “Pelopium” in the name of the Greek mythology of Tantalus’s daughter Niobe (the goddess of tears) and the son of Pelops.

In 1864, Christian Wilhelm Blomstrand, Henry Edin St. Clair Deville and Louis Joseph Troost clearly proved the Tantalum and Niobium are two different chemical elements ,and determined the chemical formula of some related compounds. In the same year, Demarinia heated tantalum chloride in a hydrogen atmosphere, and got tantalum metal for the first time through a reduction reaction. Early tantalum metals contain many impurities, and it was not until 1903 that Werner von Bolton first made pure tantalum metal.

This is a history column of SAM Sputter Target, aiming at introducing the history of different metals. If you are a metal lover or history lover, you can follow our website. For previous posts of metal history, you can search the keyword “history”.

Please visit for more information.

Discovery and development of tungsten | History of Tungsten


The history of tungsten dates back to the 17th century. At that time, miners in the Erzgebirge Mountains of Saxony, Germany, noticed that some of the ore would interfere with the reduction of cassiterite and produce slag. The miners gave the mines some German nicknames: “wolfert” and “wolfrahm”.

Axel Fredrik Cronstedt
Axel Fredrik Cronstedt

In 1758, the Swedish chemist and mineralogist Axel Fredrik Cronstedt discovered a mineral called “tungsten”, which means “heavy stone” in Swedish. He was convinced that this mineral contained an element that had not yet been discovered.


Continue reading “Discovery and development of tungsten | History of Tungsten”