3 Minutes to Know PVD Gold Sputtering

Gold is a popular precious metal that has been used for centuries as currency, hedging and jewelry for its noble and beautiful gold color.

PVD Gold Sputtering

Gold sputtering coating is a thin film deposition process in which gold or gold alloy is bombarded with high-energy ions in a vacuum chamber, causing gold atoms or molecules to be “sputtered” into the vapor and condensed on the substrate to be coated. Sputtering is one method of the PVD (Physical Vapor Deposition) process, the other two of which are thermal evaporation deposition and electron beam vapor deposition, and gold is also applied in these two methods. In thermal evaporation deposition, gold evaporates in a low-pressure environment with resistive heating elements; and in electron beam vapor deposition, gold is heated by an electron beam, and then condensed on the substrate to be coated.

Gold Plating

Apart from PVD coating, there are other ways for gold coatings such as gold plating and gold filling. Gold plating is a method that deposits a thin layer of gold on the surface of another metal by chemical or electrochemical plating. The advantages of gold plating are inexpensive and easy. However, the coating it produces is relatively soft and less durable, and what’s worse, its chemical process would cause pollution that is far away from environmentally friendly.

Gold Filling

Gold filling is the mechanical bonding of gold to metal under high temperatures and pressure. It produces a thicker coating than PVD gold sputtering and gold plating, and thus it is usually more expensive.

Advantages of PVD gold sputtering

The constant contact of skin or clothing may abrade the coatings, especially in the watch and jewelry industry. Thus, PVD gold sputtering is preferred in these two industries because the coatings it produces are harder and more durable than that of electrolytic gold plating or gold filling.

Compared to other types of gold coatings, the main advantages of PVD gold sputtering coating are their durability, retention of gloss, corrosion resistance, and abrasion resistance in contact with the skin, thus extending the life of the jewelry. PVD gold sputtering not only provides the exact color and brightness which evokes the general feeling of love and attraction with jewelry, but also has the advantage of being more environmentally friendly and durable than gold plating or gold filling for producing a gold coating.

Stanford Advanced Materials(SAM) is a global sputtering targets manufacturer which supplies high-quality and consistent products to meet our customers’ R&D and production needs.

Selection of Common Coating Types of PVD Coating

Physical Vapor Deposition (PVD) is a thin film preparation technique that physically vaporizes the surface of a material source (solid or liquid) into gaseous atoms, molecules, or partially ionized into ions under vacuum conditions. [1]

Achieving a cost-effective application of the coating depends on a number of factors, and for each particular processing application, there is typically only one or several possible coating options. The choice of coating and its characteristics correctly determines the difference between a significant increase in processability and little improvement. Therefore, it is necessary to select a suitable coating according to detailed parameters such as the processing speed, the cooling method, the material to be processed, and the processing method. The following is our recommended coating selection:

TiN

TiN is a versatile coating that increases tool hardness and has a higher oxidation temperature.

Uses: high-speed steel cutting tools, slow processing tools (such as low-speed turning tools), wear parts, injection molds.

TiCN

The TiCN coating is based on the addition of carbon to the TiN to increase the hardness and low coefficient of friction of the coating.

Uses: high-speed steel tools, stamping dies, forming dies

TiAlN, AlTiN

The alumina coating formed by the TiAlN/AlTiN coating during processing can effectively improve the high-temperature processing life of the processing tool. The high-temperature oxidation resistance of the AlTiN coating is about 100 degrees higher than that of TiAlN.

Uses: Carbide tools (TiAlN is recommended when the hardness of the processed material is lower than HRC45 and AlTiN is recommended when the hardness of the processed material is higher than HRC45), thin-walled stamping die (TiAlN), die-casting die (AlTiN)

CrN

CrN coating has good adhesion, corrosion resistance, and wear-resistance.

Uses: processing aluminum alloy, red copper cutter, injection mold, parts (especially with lubricating oil soaking)

CBC(DLC)

The PLATIT CBC coating is composed of a TIN+TICN+DLC structure. It has the advantages of low friction coefficient, wear-resistance, and low stress of the film layer.

Uses: Lubricating coatings, forming dies, aluminum alloys, and other bonding materials stamping dies.

Apart from features and uses, different coating materials also show different colors. If you require the specific color of your coating, you can refer to the sheet below to choose your desirable coating materials.

PVD Coating Colors

Stanford Advanced Materials(SAM) supplies high-quality and consistent products to meet our customers’ R&D and production needs. All the types we talked about above can be found in SAM. Please visit https://www.sputtertargets.net/ for more information.

Reference:

[1] What is Physical Vapor Deposition (PVD)?

What is Reactive Sputtering Coating Technology?

At present, reactive sputtering deposition is a well-established sputter coating technology and is widely used for industrial coating deposition to produce thin layers for high-added value products, such as flat panel displays, solar cells, optical components, and decorative finishes.

Definition

In the process of reactive sputtering, a target material is sputtered in the presence of a gas or a mixture of gasses that will react with the target material to prepare a compound film of a predetermined chemical ratio. Reactive sputtering is most often practiced using one or more magnetron sputtering cathodes. Therefore, it is also called reactive magnetron sputtering.

Sputtering Target

Sputtering targets can be divided into metal targets, alloy targets, ceramic targets, etc. Metal sputtering targets can be used to produce compound materials. For example, a titanium sputtering target can be used to produce coatings such as TiO2, TiN, and Ti-O-N. Apart from it, titanium targets can also be used to produce any of the aforementioned different compositions as well as boride and carbide films. Compared with the compound target, the metal target has the advantage of longer service life.

Reactive gases

In most cases, Argon is the main gas used in reactive sputtering as well as other sputter coating methods. It has to be mentioned that the amount of a reactive gas introduced into a process chamber should be strictly controlled in order to either achieve a certain amount of doping or to produce a fully reacted compound. Here is a list of other gasses used in reactive sputtering).

Gasses Uses
Oxygen (O2) deposition of oxide films (e.g. Al2O3, SiO2, TiO2, HfO2, ZrO2, Nb2O5, AZO, ITO)
Nitrogen (N2) deposition of nitride films (e.g. TiN, ZrN, CrN, AlN, Si3N4, AlCrN, TiAlN)
Carbon dioxide (CO2) deposition of oxide coatings
Acetylene (C2H2) deposition of metal-DLC, hydrogenated carbide, carbo-nitride films
Methane (CH4) similar applications as for C2H2

Several reactive gasses can be mixed in order to deposit a multi-component functional thin film. Additional reactive gas is sometimes used to enhance a certain deposition process (e.g. addition of N2 in the SiO2 reactive sputtering process).

Application

Coatings and films produced by Reactive Magnetron Sputtering can be used in a large variety of products such as OLED devices, optical antireflective coatings, and decorative coatings.

 Please visit https://www.sputtertargets.net/ for information.

What Will Affect The Magnetron Sputtering Voltage?

Magnetic field

Magnetic field influences inversely the sputtering voltage. In other words, when the magnetic field on the surface of the sputtering target increases, the operating voltage of magnetron sputtering will decrease. It happens because the sputter-etched surface of the target gets closer to the strong magnetic field of the permanent magnet behind the target. To be noted, when the magnetic field strength increases above 0.1T, its effect on the sputtering voltage is no longer obvious.

In order to reduce the influence of this factor, the thickness of the sputtered material is not arbitrary, but limited. In general, thicker non-magnetic targets can be used in stronger magnetic fields.

magnetron sputtering11-9-2

Material Type

Different target materials also affect the sputtering voltage. Here are examples of ITO, copper, aluminum, titanium, manganese, and chromium target.

Sputtering Target Sputtering Voltage
Indium Tin Oxide (ITO) ≈200V
Copper (Cu)
Aluminum (Al)
Titanium (Ti)
400~600V
Manganese (Mn)
Chromium (Cr)
>700V

Gas Pressure

Working gas pressure

Under the condition that various parameters (such as environmental conditions, power control panel parameters, etc.) remain unchanged, the increase of the working gas pressure will reduce the magnetic sputtering voltage.

Reactive gas pressure

On contrary, under the determined environment and constant power source, the increase of reactive gas pressure will result in the increase of magnetic sputtering voltage.

Distance Between Cathode & Anode

magnetron sputtering11-9

The distance between the cathode and anode in vacuum gas discharge can have a certain effect on the sputtering voltage. If the distance is too large, the internal resistance of the equivalent gas discharge is mainly determined by the plasma equivalent internal resistance. Conversely, if the distance is too small, the internal resistance of the plasma discharge will be small.

When the magnetron target ignited and enters the normal sputtering, if the distance between the cathode and anode is too small, although the sputtering current has reached the process setting value, the target sputtering voltage is still low.

Please visit https://www.sputtertargets.net/ for more information.

Magnetrons & Magnets Used in Magnetron Sputtering

The planar magnetron is an exemplary “diode” mode sputtering cathode with the key expansion of a permanent magnet cluster behind the cathode. This magnet exhibit is organized so that the attractive field on the substance of the target is ordinary to the electric field in a shut way and structures a limit “burrow” which traps electrons close to the surface of the target. This enhances the effectiveness of gas ionization and compels the release plasma, permitting higher presence at the lower gas weight and attaining a higher sputter affidavit rate for Physical Vapor Deposition (PVD) coatings.

Although some distinctive magnetron cathode/target shapes have been utilized in magnetron sputtering processes, the most widely recognized target types are circular and rectangular. Circular magnetrons are all the more regularly found in littler scale “confocal” cluster frameworks or single wafer stations in group instruments. Rectangular Magnetrons are frequently found in bigger scale “in line” frameworks where substrates examine straightly past the focus on some type of carpet lift or transporter.

Color-online-Upper-Illustrations-of-circular-and-rectangular-planar-magnetron
Color-online-Upper-Illustrations-of-circular-and-rectangular-planar-magnetron. Greene, J.. (2017). Review Article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 35. 05C204. 10.1116/1.4998940.

Most cathodes – including practically all circular and rectangular ones – have a straightforward concentric magnet design with the middle being one shaft and the edge the inverse. For the circular magnetron, this would be a generally little adjusted magnet in the middle, and an annular ring magnet of the inverse extremity around the outside with a hole in the middle. For the rectangular magnetron, the core one is typically a bar down the long hub (however short of the full length) with a rectangular “wall” of the inverse extremity and the distance around it with a hole in the middle. The crevice is the place the plasma will be, a roundabout ring in the circular magnetron or a lengthened “race track” in the rectangular.

The magnetron works with either an attractive arrangement – the middle could be north and the border might be south, or the other way around. Notwithstanding, in most sputter frameworks, there are various cathodes in reasonably close vicinity to one another, and you don’t need stray north/ south fields structured in the middle of the targets.

Those N/S fields ought to just be on the targets’ confronts, structuring the coveted attractive shafts there. Hence, it is completely attractive to verify all the cathodes in one framework are adjusted the same way, either all north on their borders or all south on their edges. What’s more, for offices with numerous sputter frameworks, it is similarly alluring to make all of them the same so cathodes can securely be traded between the frameworks without agonizing over magnet arrangement.

There are extra contemplations and choices in regard to the magnets. Most target materials are nonmagnetic and in this manner don’t meddle with the obliged attractive field quality. However, in the event that you are sputtering attractive materials, for example, iron or nickel, you will require either higher quality magnets, more slender targets, or both with a specific end goal to abstain from having the surface attractive field adequately shorted out by the attractive target material.

Past that, the magnet’s subtle elements, for example, attractive quality and crevice measurements, might be intended to enhance target material usage or to enhance consistency along the vital pivot of a rectangular target. It is even conceivable to utilize electromagnets rather than perpetual magnets, which can manage the cost of some level of programmable control of the attractive field, yet does, obviously, build many-sided quality and expense.

For more information, please visit https://www.sputtertargets.net/.

How to Judge the Uniformity of PVD film?

PVD, Physical Vapor Deposition, is a general term for a series of coating methods. It includes two main categories: evaporation deposition coating and sputtering deposition coating. To specifictly classify it, there are vacuum ion evaporation, magnetron sputtering, MBE molecular beam epitaxy, sol gel method, etc.

For PVD vacuum coating with different principles, the concept of uniformity will have different meanings with the coating scale and film composition, and the factors affecting uniformity are also different. In general, film uniformity can be understood from the following three aspects.

Uniformity in thickness (roughness)

From the scale of optical films (that is, 1/10 wavelength as a unit, about 100A), vacuum coating can easily control the roughness within 1/10 of the wavelength of visible light, and the uniformity is quite good.

But if it refers to the uniformity on the atomic layer scale (that is to say, to achieve 10A or even 1A surface flatness), the roughness of the film can be good or bad, which is also the main technical content and technical bottleneck in the current vacuum coating.

The thickness uniformity is mainly determined by the following points: 1) the degree of lattice matching between the substrate material and the target material; 2) the surface temperature of the substrate; 3) evaporation power, speed; 4) vacuum degree; 5) coating time, thickness.

Thin film thickness

Uniformity in chemical composition

In thin films, the atomic composition of compounds can easily produce non-uniform properties due to their small size. For example, in the process of preparing SiTiO3 thin films, if the material ratio and environment are not strictly controlled, the components of the prepared surface may not be SiTiO3, but Sr, Ti, and O may exist in other proportions.

The uniformity of the components of the evaporation coating is not easy to guarantee, and the specific factors that can be adjusted are the same as the above, but due to the limitation of the principle, for the non-single component coating, the uniformity of the components of the evaporation coating is not good.

Uniformity of lattice order

This determines whether the film is single crystal, polycrystalline, or amorphous. It is also a hot issue in vacuum coating technology.

For more information, please visit https://www.sputtertargets.net/.