Comparing the Advantages and Disadvantages of PVD and CVD


Physical Vapor Deposition (PVD) and Chemical Vapor Deposition (CVD) are essential coating techniques used in various industries. Both methods offer distinct advantages and drawbacks, influencing their suitability for specific applications. This article provides an integrated comparison of PVD and CVD, highlighting their respective strengths and weaknesses.

Understanding PVD and CVD

PVD involves the physical transfer of material from a source to a substrate through processes like sputtering or evaporation. Typically operating at lower temperatures, PVD is advantageous for coating heat-sensitive materials. In contrast, CVD relies on chemical reactions to deposit a thin film on the substrate. This process occurs at higher temperatures and involves gaseous precursors that decompose or react to form the coating.

Advantages and Disadvantages of PVD

PVD is well-regarded for its lower temperature requirements, making it ideal for applications involving heat-sensitive substrates. The process is environmentally friendly, producing minimal toxic by-products, and it results in high-purity coatings with excellent adhesion. However, PVD has its limitations. The need for a direct line of sight between the material source and the substrate restricts its effectiveness on complex geometries. Additionally, the deposition rates in PVD are generally slower than those in CVD, which can impact efficiency in large-scale productions. Despite the lower temperatures, certain PVD processes may still negatively affect heat-sensitive substrates, necessitating careful process control.

Advantages and Disadvantages of CVD

CVD excels in providing uniform coatings, even on substrates with intricate shapes. This uniformity makes it advantageous for applications where coating conformity is critical. CVD also offers higher deposition rates, making it efficient for mass production and reducing overall processing time and costs. Furthermore, CVD can deposit a diverse range of materials, including metals, ceramics, and polymers, offering versatility in various industrial applications. However, CVD’s high-temperature requirements can limit its use with temperature-sensitive substrates. The process also produces toxic by-products, necessitating stringent safety protocols and effective waste management systems. Additionally, CVD systems are typically more complex and costly to operate and maintain compared to PVD, which can be a significant drawback for smaller operations.


PVD finds extensive use in the electronics industry, creating thin films for semiconductors and other electronic components. It is also employed in decorative coatings, enhancing the appearance and durability of consumer goods like watches and jewelry. In the tooling industry, PVD provides hard coatings for cutting tools, significantly improving their durability and performance by reducing wear and friction.

CVD is commonly used in aerospace for protective coatings on turbine blades and other components exposed to high temperatures and harsh environments. In the medical field, CVD enhances the biocompatibility of implants and medical tools, making them safer and more effective for patient use. The optics industry uses CVD to produce anti-reflective and other specialized coatings for optical instruments, improving their performance and longevity.


Deciding between PVD and CVD depends on specific application requirements, including temperature tolerance, coating uniformity, and production scale. PVD is favored for its lower temperature operations, environmental benefits, and high-purity coatings. Conversely, CVD is preferred for its efficiency in providing uniform coatings and material versatility, despite its higher operational complexity and cost. Understanding these nuances is crucial for selecting the optimal coating technique for your industrial applications, ensuring both performance and cost-effectiveness.

For further detailed information, you can read this article PVD vs. CVD: In-depth Comparison.

The Impact of PVD on Thin Film Transistors (TFTs)

In the dynamic landscape of semiconductor innovation, one silent hero is reshaping the very core of visual technologies – Physical Vapor Deposition (PVD). This article embarks on a journey into Thin Film Transistors (TFTs), unveiling the transformative influence of PVD techniques in their fabrication.

PVD Unveiled: The Artistry of Precision

At the heart of advanced microelectronics, PVD emerges as a masterful artisan, bringing precision and efficiency to thin film deposition processes. In the realm of TFTs, where visual brilliance meets technological intricacy, PVD’s artistry is truly unrivaled.

Enhancing TFT Performance: A Symphony of Advancements

TFTs are the backbone of modern displays, from flat-panel displays to organic light-emitting diodes (OLEDs). PVD techniques, however, elevate their performance to unprecedented levels. By depositing thin films with exceptional precision, PVD enables the creation of TFTs that redefine visual experiences.

Case in Point: High-Density Memory Storage

In the pursuit of pushing the boundaries of data storage capabilities, PVD takes center stage. Case studies abound with instances where PVD is employed to deposit thin films, enabling the creation of densely packed memory cells. The result? A maximized storage capacity coupled with enhanced data retrieval speeds, contributing significantly to the efficiency of memory devices.

Improving Response Times: The PVD Advantage

In the fast-paced world of visual content, response times are critical. PVD techniques play a pivotal role in enhancing TFT response times, ensuring a seamless and rapid transition between pixels. This not only meets the demands of today’s high-speed visual content but sets the stage for the future of display technologies.

Illustration: Performance Enhancement in Logic Circuits

Logic circuits form the neural network of semiconductor devices, and PVD’s influence extends here as well. Through controlled deposition processes, PVD ensures the creation of high-quality interconnects and metal layers, reducing resistivity and improving signal propagation. Case studies illuminate how PVD contributes to the fabrication of logic circuits with superior speed, reliability, and energy efficiency.

Reducing Power Consumption: A Green Revolution

As environmental consciousness permeates all industries, PVD takes a green stance by contributing to the reduction of power consumption in TFTs. By optimizing the materials and processes involved, PVD ensures that TFTs operate at peak efficiency with minimal energy consumption, aligning with the sustainability goals of the semiconductor industry.

Real-world Impact: Circuits in Action

The precision and reliability offered by PVD technology in TFT fabrication have a tangible impact on semiconductor memory technologies. The continual advancement of storage capacity and processing speeds is not just theoretical; it is the result of the meticulous dance of PVD on semiconductor canvases.

Further Reading: Advanced Applications of PVD in Semiconductor Devices

Conclusion: PVD’s Ongoing Symphony of Innovation

As we wrap up this exploration into the impact of PVD on TFTs, it becomes evident that PVD is not merely a technology; it is an ongoing symphony of innovation. From high-density memory storage to logic circuits and reduced power consumption, PVD’s influence is pervasive and transformative.

For those eager to delve deeper into the artistry of PVD, this article provides a glimpse into the intricate dance of precision and efficiency in TFT fabrication. The revolutionizing impact of PVD on displays is not just a trend; it is the unfolding narrative of a technology that continues to shape the future of visual experiences.

To explore more about PVD and its applications, visit SputterTargets. Join us in the ongoing symphony of innovation.

PVD vs. CVD Temperature Considerations


Thin-film deposition techniques are pivotal in shaping the properties of materials across various industries. Among these techniques, Physical Vapor Deposition (PVD) and Chemical Vapor Deposition (CVD) stand out, offering unique approaches to coating materials onto substrates. In this exploration, we delve into the critical factor of temperature, comparing the temperature dynamics of PVD and CVD and unraveling their implications.

Temperature Dynamics in PVD

Physical Vapor Deposition encompasses evaporation and sputtering processes, both of which operate at relatively low temperatures. This characteristic holds significant advantages, particularly for preserving the integrity of temperature-sensitive materials. These lower temperatures make PVD suitable for a broad range of applications, from electronics to automotive industries.

The evaporation process involves transitioning materials from a solid to a vapor state, while sputtering entails ejecting particles from a target material. This physical approach not only ensures the preservation of material properties but also allows for the coating of temperature-sensitive substrates.

Temperature Dynamics in CVD

Contrastingly, Chemical Vapor Deposition relies on chemical reactions to deposit thin films onto substrates. This method operates at significantly higher temperatures than PVD. The elevated temperatures are essential for the chemical reactions to take place, presenting challenges, especially when coating materials onto tools made of high-speed steel.

Chemical Vapor Deposition offers precise control over the composition and structure of the deposited films, making it a preferred choice in semiconductor manufacturing, aerospace, and the production of advanced materials. However, the high temperatures involved can impact the hardness of tools, necessitating additional heat treatments, such as vacuum heat treatment, to restore their properties.

Comparative Analysis

The temperature differences between PVD and CVD play a crucial role in determining their applicability. PVD’s relatively low operating temperatures provide versatility, allowing for the coating of temperature-sensitive materials. In contrast, CVD, with its higher temperatures, demands careful consideration, particularly when dealing with tools made of high-speed steel.

Material compatibility is another aspect influenced by temperature differences. PVD proves to be suitable for a broad range of materials, including those sensitive to high temperatures. On the other hand, CVD may require additional post-coating treatments to restore the hardness of tools, ensuring optimal performance.

A practical example highlighting the necessity of vacuum heat treatment in CVD for tool coatings emphasizes the intricate relationship between temperature dynamics and the performance of coated materials. Tools subjected to CVD processes may experience a loss of hardness, underscoring the importance of understanding and managing temperature variations in thin-film deposition.

Link to the Comprehensive Guide: Exploring the Temperature Dynamics in Thin-Film Deposition: A Comparative Analysis of PVD and CVD


In conclusion, the temperature dynamics in thin-film deposition techniques are pivotal factors influencing the choice between PVD and CVD. Understanding the operating temperatures, material compatibility, and the impact on specific applications is crucial for making informed decisions. As industries continue to push the boundaries of material science, the balance between temperature considerations and desired outcomes remains at the forefront of thin-film deposition advancements.

Role of Advanced Coating Technologies in Industry 4.0


Standing on the cusp of the Fourth Industrial Revolution, commonly known as Industry 4.0, we find ourselves amid a transformative period in manufacturing. This article delves into the integral role of advanced coating technologies, connecting their evolution to the emerging trends in PVD technology. From the intricacies of smart manufacturing to the precision of engineering, we explore how Industry 4.0 propels the demand for innovative surface coatings.

Understanding Industry 4.0

Industry 4.0 signifies a monumental shift in manufacturing, embodying the integration of digital technologies into every facet of industry. This revolution harnesses the power of artificial intelligence, the Internet of Things (IoT), machine learning, data analytics, and advanced robotics. It builds upon the digital foundations laid by its predecessors, promising a connected, intelligent, and data-driven industrial landscape.

The Intersection of Industry 4.0 and PVD Technology

At its core, Industry 4.0 seamlessly merges technologies like artificial intelligence, the Internet of Things, and data analytics. This integration profoundly influences surface engineering, with Physical Vapor Deposition (PVD) technology playing a pivotal role. In the context of Industry 4.0, PVD processes transcend conventional surface coating; they become integral components within a connected, intelligent manufacturing ecosystem. This ecosystem relies on real-time adaptability and data-driven insights, with PVD coatings facilitating these features.

Precision Coatings for Smart Manufacturing

In the realm of Industry 4.0, precision is paramount. Advanced coating technologies, particularly those facilitated by PVD processes, contribute significantly to the precision required for smart manufacturing. Coatings engineered at the nanoscale are crucial for components demanding precision, such as sensors, actuators, and microelectromechanical systems (MEMS). These coatings enhance wear resistance, reduce friction, and provide thermal stability, ensuring the optimal performance of interconnected components within the Industry 4.0 framework.

Real-world Applications

Let’s transition from theory to practice by examining real-world applications where advanced coatings play a pivotal role in smart manufacturing. In aerospace, high-performance coatings withstand extreme conditions and enhance fuel efficiency. In electronics, nanoscale coatings enable device miniaturization and improve overall performance. The automotive industry benefits from PVD coatings providing durability and aesthetics to components. Each application exemplifies the symbiosis between Industry 4.0 principles and advanced PVD coating technologies.

Future Prospects

As we conclude, let’s peer into the prospects of advanced coating technologies within the Industry 4.0 framework. The evolving landscape envisions even more interconnected, intelligent manufacturing systems. PVD technology, with its ability to deliver precisely, tailored coatings, is poised to be a linchpin in this future industrial ecosystem. This integration promises to revolutionize surface engineering, ushering in a new era of precision, efficiency, and unprecedented possibilities.


In the era of Industry 4.0, the story of advanced coating technologies and PVD is one of collaboration and innovation. As we navigate the future, the integration of these technologies promises to revolutionize the way we approach surface engineering, setting the stage for a new era of precision, efficiency, and unprecedented possibilities.

Unlocking the Benefits of Zirconium Targets for High-Quality Thin Film Coatings


Zirconium targets are a critical component used in many different industries to create high-quality thin films through physical vapor deposition (PVD) and sputtering processes. In this article, we will explore the various benefits of zirconium targets that make them an ideal choice for researchers and manufacturers.

Consistent and Uniform Coatings

One of the primary advantages of zirconium targets is their ability to produce consistent and uniform coatings. With their excellent thermal conductivity, zirconium targets can maintain a stable temperature during the sputtering process, which helps to ensure that the resulting film is free from defects and of high quality.

Durable and Resistant to Wear

Zirconium targets are highly durable, making them an ideal choice for use in harsh or demanding operating conditions. Whether they are being used for coating medical devices, automotive parts, or aerospace components, zirconium targets are able to withstand the stresses of repeated use and exposure to harsh environments.

Versatility in Creating Complex Multilayer Coatings

Zirconium targets are also highly versatile. Not only can they be used to create high-quality zirconium coatings, but they can also be used to deposit other materials such as aluminum, titanium, and silver. This makes zirconium targets a valuable tool for researchers and manufacturers who need to create complex multilayer coatings with precise control over the thickness and composition of each layer.

Ideal for Applications Where Purity Is Critical

Zirconium targets are an excellent choice in applications where purity is critical. Because zirconium is a highly refractory metal, it has a low affinity for impurities and can help to maintain the purity of the coating material. This is particularly important in applications such as semiconductor manufacturing, where even small amounts of impurities can have a significant impact on the performance and reliability of the final product.

Cost-Effective Solution

Finally, zirconium targets offer an attractive cost-effective option for researchers and manufacturers. Compared to other types of sputtering targets, zirconium targets are relatively low in cost, making them an accessible choice for many different applications. Additionally, their long lifespan and durability mean that they can be used for extended periods without needing to be replaced, further reducing the overall cost of operation.


In summary, zirconium targets are highly versatile, durable, and cost-effective, making them a valuable tool in many different industries. With their ability to produce consistent and uniform coatings, withstand harsh environments, create complex multilayer coatings, and maintain the purity, zirconium targets offer an ideal solution for meeting coating needs in a wide range of applications.


Gold Sputtering Target for Semiconductor Coating

Gold sputtering targets can be deposited on a semiconductor chip such as GaAs, GaP, GaN, or the like by sputtering, and can form an ohmic contact film, an electrode, and a wiring film, thereby improving the conductivity and working efficiency of the semiconductor.

The Physical Vapor Deposition Process for Semiconductor Coatings

Physical vapor deposition (PVD) is a widely used method for depositing thin films onto semiconductor substrates such as silicon wafers. The PVD process involves the transfer of material from a sputtering target or an evaporation source to a substrate. This process is carried out in a vacuum environment to prevent contamination and ensure uniform deposition of the material.

PVD is generally divided into two methods based on the principles involved in the deposition: sputtering and evaporation.

Sputtering: How It Works and Its Variations

Sputtering is like throwing stones into a pool of mud, which will splatter a lot of mud and cover the surface of other objects. Sputtering relies on argon plasma to impact the gold sputter target at high speed, thus sputtering the material near the surface of the target and dropping it onto the wafer to form a gold film.

Sputtering is also divided into direct current (DC) sputtering and radio frequency (RF) sputtering depending on the energy source of the plasma excitation. Basically, both methods can be coated with a metal film. The latter is more directed to non-metallic films such as piezoelectric or magnetic materials. The film formed by sputtering has the characteristics of insulation and a high melting point.

Evaporation: Types and Differences from Sputtering

The evaporation method differs from the heating method and is classified into two types: a thermal coater and an E-gun evaporator. The former is to directly put the pellets prepared for melt evaporation on the heating tungsten wire. Once heated, it will adhere to the heated tungsten wire due to the surface tension of the liquid and then be steamed to the periphery (including the wafer). Due to the limited heat resistance of the heated tungsten wire and the limited space for the molten metal, it is only used for low melting point materials, and the film thickness is limited.

The electron gun-type vaporizer uses an electron beam for heating, and the molten and evaporated metal particles are all placed in a graphite or tungsten crucible. When the metal vapor pressure exceeds the critical limit, it begins to slowly evaporate for four weeks (including wafers). The electron gun-type vaporizer can evaporate a metal with a higher melting point and the thickness is not limited.

Advantages and Applications of Gold Sputtering Targets in the Semiconductor Industry

Gold sputtering targets have several advantages that make them a highly desirable material in the semiconductor industry. One of the most significant advantages of gold sputtering targets is their high electrical conductivity, making them ideal for use in forming electrodes, ohmic contacts, and wiring films in semiconductors. Furthermore, gold sputtering targets are known for their excellent adhesion properties, which ensure a strong bond to the substrate surface.


In conclusion, gold sputtering targets are important materials in semiconductor coating applications, and both sputtering and evaporation are commonly used methods for PVD. The choice of method depends on several factors such as deposition rate, film quality, and adherence of the deposited film required for the application. For more information, please visit

Differences Between CVD and PVD Processes and Technologies

The most popular surface treatment technologies, chemical vapor deposition (CVD) and physical vapor deposition (PVD), have been used extensively for nearly 50 years to harden the surfaces of tools and molds. The context that follows compares the technologies and processes of CVD and PVD using the illustration of cutting tools.


In the process known as chemical vapor deposition (CVD), a vapor containing a gaseous reactant or a liquid reactant that makes up a thin film element as well as other gases necessary for the reaction are introduced into a reaction chamber in order to chemically react on the surface of the substrate to form a thin film.

Physical vapor deposition (PVD) uses low-voltage, high-current arc discharge technology under vacuum conditions to evaporate the target and ionize the vaporized material and the gas, and finally make the evaporated material and its reaction deposited on the workpiece.

Image Credit: Stanford Advanced Materials

Process and Equipment

1. Temperature

The fundamental distinction between CVD and PVD is temperature. The tools must undergo a vacuum heat treatment after coating since the process temperature of the CVD method is higher than the high-speed steel’s tempering temperature. This will restore the tools’ hardness.

2. Compared to PVD, the CVD method requires less cleaning of the tool entering the reactor.

3. The PVD coating (approximately 2.5 m) is thinner than the CVD coating (about 7.5 m) on the tool’s surface.

4. The CVD coating’s surface is marginally rougher than the substrate’s surface. On the other hand, the PVD coating has a good metallic sheen without grinding and effectively reflects the tool’s surface.

5. The crafting process

CVD has good coating performance and takes place in a gaseous atmosphere with low vacuum. Hence, every surface of the cutters encased in the reactor, including deep holes and inner walls, can be entirely coated, with the exception of the support points.

In contrast, all PVD technologies have poor coating performance both on the back and sides of the tool due to low air pressure. To prevent the production of shadows, the PVD reactor must minimize its loading density, and loading and fixing are challenging. In a PVD reactor, the tool typically revolves constantly, though occasionally it must also reciprocate.

6. Cost

Although the PVD production cycle is one-tenth that of CVD, the initial equipment expenditure is three to four times that of CVD. Whereas PVD is severely constrained, a wide range of workpieces can be treated within a CVD operating cycle. In other words, PVD can cost more than CVD in some cases.

7. Safety

As a form of “green engineering,” PVD creates less pollution when operating. Contrarily, the reactive gas and reaction tail gas of CVD may have some corrosiveness, flammability, and toxicity, and the reaction tail gas may contain powdered and fragmented chemicals, thus particular precautions for the equipment, environment, and operators must be taken.

Stanford Advanced Materials supplies high-quality and consistent products to meet our customers’ R&D and production needs. You can visit our website for more information.

3 Minutes to Know PVD Gold Sputtering

Gold is a popular precious metal that has been used for centuries as currency, hedging and jewelry for its noble and beautiful gold color.

PVD Gold Sputtering

Gold sputtering coating is a thin film deposition process in which gold or gold alloy is bombarded with high-energy ions in a vacuum chamber, causing gold atoms or molecules to be “sputtered” into the vapor and condensed on the substrate to be coated. Sputtering is one method of the PVD (Physical Vapor Deposition) process, the other two of which are thermal evaporation deposition and electron beam vapor deposition, and gold is also applied in these two methods. In thermal evaporation deposition, gold evaporates in a low-pressure environment with resistive heating elements; and in electron beam vapor deposition, gold is heated by an electron beam, and then condensed on the substrate to be coated.

Gold Plating

Apart from PVD coating, there are other ways for gold coatings such as gold plating and gold filling. Gold plating is a method that deposits a thin layer of gold on the surface of another metal by chemical or electrochemical plating. The advantages of gold plating are inexpensive and easy. However, the coating it produces is relatively soft and less durable, and what’s worse, its chemical process would cause pollution that is far away from environmentally friendly.

Gold Filling

Gold filling is the mechanical bonding of gold to metal under high temperatures and pressure. It produces a thicker coating than PVD gold sputtering and gold plating, and thus it is usually more expensive.

Advantages of PVD gold sputtering

The constant contact of skin or clothing may abrade the coatings, especially in the watch and jewelry industry. Thus, PVD gold sputtering is preferred in these two industries because the coatings it produces are harder and more durable than that of electrolytic gold plating or gold filling.

Compared to other types of gold coatings, the main advantages of PVD gold sputtering coating are their durability, retention of gloss, corrosion resistance, and abrasion resistance in contact with the skin, thus extending the life of the jewelry. PVD gold sputtering not only provides the exact color and brightness which evokes the general feeling of love and attraction with jewelry, but also has the advantage of being more environmentally friendly and durable than gold plating or gold filling for producing a gold coating.

Stanford Advanced Materials(SAM) is a global sputtering targets manufacturer which supplies high-quality and consistent products to meet our customers’ R&D and production needs.

Selection of Common Coating Types of PVD Coating

Physical Vapor Deposition (PVD) is a thin film preparation technique that physically vaporizes the surface of a material source (solid or liquid) into gaseous atoms, molecules, or partially ionized into ions under vacuum conditions. [1]

Achieving a cost-effective application of the coating depends on a number of factors, and for each particular processing application, there is typically only one or several possible coating options. The choice of coating and its characteristics correctly determines the difference between a significant increase in processability and little improvement. Therefore, it is necessary to select a suitable coating according to detailed parameters such as the processing speed, the cooling method, the material to be processed, and the processing method. The following is our recommended coating selection:


TiN is a versatile coating that increases tool hardness and has a higher oxidation temperature.

Uses: high-speed steel cutting tools, slow processing tools (such as low-speed turning tools), wear parts, injection molds.


The TiCN coating is based on the addition of carbon to the TiN to increase the hardness and low coefficient of friction of the coating.

Uses: high-speed steel tools, stamping dies, forming dies

TiAlN, AlTiN

The alumina coating formed by the TiAlN/AlTiN coating during processing can effectively improve the high-temperature processing life of the processing tool. The high-temperature oxidation resistance of the AlTiN coating is about 100 degrees higher than that of TiAlN.

Uses: Carbide tools (TiAlN is recommended when the hardness of the processed material is lower than HRC45 and AlTiN is recommended when the hardness of the processed material is higher than HRC45), thin-walled stamping die (TiAlN), die-casting die (AlTiN)


CrN coating has good adhesion, corrosion resistance, and wear-resistance.

Uses: processing aluminum alloy, red copper cutter, injection mold, parts (especially with lubricating oil soaking)


The PLATIT CBC coating is composed of a TIN+TICN+DLC structure. It has the advantages of low friction coefficient, wear-resistance, and low stress of the film layer.

Uses: Lubricating coatings, forming dies, aluminum alloys, and other bonding materials stamping dies.

Apart from features and uses, different coating materials also show different colors. If you require the specific color of your coating, you can refer to the sheet below to choose your desirable coating materials.

PVD Coating Colors

Stanford Advanced Materials(SAM) supplies high-quality and consistent products to meet our customers’ R&D and production needs. All the types we talked about above can be found in SAM. Please visit for more information.


[1] What is Physical Vapor Deposition (PVD)?

What is Reactive Sputtering Coating Technology?

At present, reactive sputtering deposition is a well-established sputter coating technology and is widely used for industrial coating deposition to produce thin layers for high-added value products, such as flat panel displays, solar cells, optical components, and decorative finishes.


In the process of reactive sputtering, a target material is sputtered in the presence of a gas or a mixture of gasses that will react with the target material to prepare a compound film of a predetermined chemical ratio. Reactive sputtering is most often practiced using one or more magnetron sputtering cathodes. Therefore, it is also called reactive magnetron sputtering.

Sputtering Target

Sputtering targets can be divided into metal targets, alloy targets, ceramic targets, etc. Metal sputtering targets can be used to produce compound materials. For example, a titanium sputtering target can be used to produce coatings such as TiO2, TiN, and Ti-O-N. Apart from it, titanium targets can also be used to produce any of the aforementioned different compositions as well as boride and carbide films. Compared with the compound target, the metal target has the advantage of longer service life.

Reactive gases

In most cases, Argon is the main gas used in reactive sputtering as well as other sputter coating methods. It has to be mentioned that the amount of a reactive gas introduced into a process chamber should be strictly controlled in order to either achieve a certain amount of doping or to produce a fully reacted compound. Here is a list of other gasses used in reactive sputtering).

Gasses Uses
Oxygen (O2) deposition of oxide films (e.g. Al2O3, SiO2, TiO2, HfO2, ZrO2, Nb2O5, AZO, ITO)
Nitrogen (N2) deposition of nitride films (e.g. TiN, ZrN, CrN, AlN, Si3N4, AlCrN, TiAlN)
Carbon dioxide (CO2) deposition of oxide coatings
Acetylene (C2H2) deposition of metal-DLC, hydrogenated carbide, carbo-nitride films
Methane (CH4) similar applications as for C2H2

Several reactive gasses can be mixed in order to deposit a multi-component functional thin film. Additional reactive gas is sometimes used to enhance a certain deposition process (e.g. addition of N2 in the SiO2 reactive sputtering process).


Coatings and films produced by Reactive Magnetron Sputtering can be used in a large variety of products such as OLED devices, optical antireflective coatings, and decorative coatings.

 Please visit for information.