Gadolinium Oxide Products (Powder & Coating Materials & Microcrystal )

Rare earth oxides (REOs) have gained more and more attention due to their unique magnetic, luminescent, and electrochemical properties. They are used for applications in various industries such as nuclear, electronics, lasers, and etc. Among them, although Gadolinium oxide (Gd2O3) is not the most widely used REOs, but is the most researched one.

The key property of Gadolinium Oxide

Chemical formula Gd2O3
Molar mass 362.50 g/mol
Magnetic susceptibility +53,200·10−6 cm3/mol
Density 7.41 (g/cm3)
Melting Point 2330  (°C)

Gadolinium oxide preparation

Gadolinium oxide can be formed by thermal decomposition of the hydroxide, nitrate, carbonate, or oxalates. Specifically, first, use monazite or a mixed rare earth ore as the raw material. Then Extract and purify the ore to prepare the samarium-gadolinium mixed rare earth solution. Use oxalic acid to precipitate gadolinium oxalic acid. Then separate, dry, and burn the gadolinium oxalic acid to obtain gadolinium oxide.

Gadolinium oxide powder

Gadolinium oxide is a white powder. It is insoluble in water but soluble in acid. It easily absorbs moisture and carbon dioxide from the air. It can be used as a raw material for various fluorescent compounds, absorption material in atomic reactions, nuclear fuels, magnetic bubble material, screen-sensitivity increasing material, as well as many other applications in the chemical, glass and electronic industries.

Gadolinium Oxide (Gd2O3) Powder
Gadolinium Oxide (Gd2O3) Powder

Gadolinium oxide sputtering target

Gadolinium oxide sputtering target is the product made of gadolinium oxide materials by casting or powder metallurgy. Common shapes of the gadolinium oxide sputter targets are planar, circular, rotary, and rectangular. In general, planar targets are cheaper but rotary targets have a higher utilization rate. Gadolinium oxide sputtering target is specially used in the sputtering process (a method of physical vapor deposition) to form a film on the substrate of glass, metal or other materials. Its purpose is either to protect the substrate or improve its properties.

Gadolinium Oxide (Gd2O3) Sputtering Target
Gadolinium Oxide (Gd2O3) Sputtering Target

Gadolinium oxide microcrystal

Gadolinium oxide microcrystal is defined as the gadolinium oxide nanomaterial with at least one direction usually in the range of 1–100 nm. These materials have different physical, chemical, and electrical properties in comparison with traditional bulk gadolinium oxide materials. These nanomaterials have the crystallographic stability up to temperatures of 2325°C, high mechanical strength, excellent thermal conductivity, and a wide band optical gap. Thus, they are used for new products and applications and may also be incorporated into various industrial processes in the nuclear industry, electronics, lasers, and optical material.

Gadolinium Oxide (Gd2O3) Nanomaterial
Gadolinium Oxide (Gd2O3) Nanomaterial

Please visit for more information.

Who discovered Iridium? | History of Metal


Iridium, a very hard, brittle, silvery-white transition metal of the platinum group, is the second-densest metal (after osmium) with a density of 22.56 g/cm3 as defined by experimental X-ray crystallography.



Smithson Tennant

Smithson TennantIridium was discovered together with osmium in1803 by English chemist Smithson Tennant in London. When crude platinum was dissolved in dilute aqua regia (a mixture of nitric and hydrochloric acids), it left behind a black residue. Because of the black color, it was initially thought to be graphite. By treating it alternately with alkalis and acids, Tennant was able to separate it into two new elements. These he announced at the Royal Institution in London, naming one iridium (comeing from the Latin word ‘iris’, meaning rainbow) because many of its salts were so colorful; and the other osmium (derived from osme, the Greek word for smell) because it had a curious odor.


Name Iridium
Symbol Ir
Color silvery-white
CAS number 7439-88-5
Melting point 2446°C, 4435°F, 2719 K
Boiling point 4428°C, 8002°F, 4701 K
Density (g cm−3) 22.5622


Iridium is a rare, hard, lustrous, brittle, very dense platinum-like metal. Chemically it is almost as unreactive as gold. It is the most corrosion-resistant metal known and it resists attack by any acid. Iridium is generally credited with being the second densest element (after osmium) based on measured density, although calculations involving the space lattices of the elements show that iridium is denser.


Due to its good corrosion-resistance, it is used of as a hardening agent for special alloy or to form an alloy with osmium, which is used for bearing compass and tipping pens.

Iridium Application

Iridium is used in making Iridium crucibles and other equipment that is used at high temperatures. Iridium sputtering target is a coating material to produce Iridium film, which is used as protective film or heavy-duty electrical contacts. In addition, Iridium was used in making the international standard kilogram, which is an alloy of 90% platinum and 10% iridium.

Please visit for more information.


Reference: “Iridium.” Chemicool Periodic Table. 17 Oct. 2012. Web. 3/21/2019 <>.

Planar Sputtering Target: Pros and Cons

Although the rotary targets have developed in recent years, the mainstream shape of the sputtering target is still the planar type. Today let us take a look at the pros and cons of planar targets to help you determine whether a planar sputtering target is suitable for your project.

Advantages of Planar Sputter Target

Simple structure – one of the main advantages of the planar target is that the structure is simple. The common planar targets on the market are rectangular planar targets and circular planar targets, which are easily produced by molds. In other words, planar target preparation requires fewer machines and technologies and is easier to prepare. This is why planar targets still dominate the sputtering target market.

Planar sputtering target mould

Low price – You can never deny that the price is always an important competitive factor. As mentioned above, the manufacturing process of the planar sputter target is easier, so its price is much lower than the rotatory sputter target.

Strong versatility – Planar sputtering targets usually have strong versatility. Therefore, the transportation of the planar targets is relatively simple and is not easily damaged during transportation.

Good uniformity and repeatability – Film layers sputtered by planar targets usually boast good uniformity and repeatability. Planar targets are still best suited for prototype work or elemental experimentation, especially when large amounts of material are not needed at once.

Disadvantages of Planar Sputter Target

Its biggest disadvantage is the low utilization rate (generally only about 20%).  In the sputtering process of the planar target,  a strip-shaped pit will be formed when the target of the glow region (the magnetic field distribution region) is consumed to a certain extent, making the target body thinner. And once the pit depth reaches a certain value, the target cannot be utilized anymore. The low utilization rate also reduces its price advantage to some extent.

In conclusion, planar targets are still the best choice for prototype work or elemental experimentation, especially when large amounts of material are not needed at once. But its disadvantage of low utilization rate (20% vs. 80% compared with the rotatory target) does constrain its development.

Next week, let us look at the biggest competitor of the planar target– the rotatory target. Weighting the pros and cons of these two types of sputtering target may help you better choose the one for your application.

Please visit for more information.