Sputter Coating Advantages vs. Disadvantages

Sputter coating is the core thin film deposition process in the semiconductor, disk drive, CD and optics industries today.

When a suitable gas (usually argon) and a target material (usually metals) are used to form a glow discharge between the cathode and the anode, the sputtering target is bombarded to cause the atoms to be ejected from the target material——the process is referred to as “sputtering”; the atoms of the sputtering target will be deposited on a substrate, such as a silicon wafer, solar panel or optical device, and this process is known as sputter deposition.

Sputter deposition, as a relatively common physical vapor deposition (PVD) method, has its advantages, such as a wide range of deposition materials and high coating quality.

The table below details the advantages and disadvantages of sputter coating. It is provided by Stanford Advanced Materials and is for informational purposes only.

Advantages Disadvantages
(1) Able to deposit a wide variety of metals, insulators, alloys and composites.

(2) Replication of target composition in the deposited films.

(3) Capable of in-situ cleaning prior to film deposition by reversing the potential on the electrodes .

(4) Better film quality and step coverage than evaporation.

(5) This is partly because adatoms are more  energetic, and film is ‘densified’ by in-situ ion bombardment, and it is easier to heat up to high T than evaporation that is in vacuum.

(6) More reproducible deposition control – same deposition rate for same process parameters (not true for evaporation), so easy film thickness control via time.

(7) Can use large area targets for uniform thickness over large substrates.

(8) Sufficient target material for many depositions.

(9) No x-ray damage.

(1) Substrate damage due to ion bombardment or UV generated by plasma.

(2) Higher pressures 1 –100 mtorr ( < 10-5 torr in evaporation), more contaminations unless using ultra clean gasses and ultra clean targets.

(3) Deposition rate of some materials quite low.

(4) Some materials (e.g., organics) degrade due to ionic bombardment.

(5) Most of the energy incident on the target becomes heat, which must be removed.

For more information, please visit https://www.sputtertargets.net/sputtering-target-materials.html.

Image Gallery of SAM Sputter Targets

Stanford Advanced Materials (SAM) Corporation is a global supplier of various sputter targets such as metals, alloys, oxides, ceramic materials. We provide sputtering targets for a wide range of applications from ferromagnetic, complex oxides, and semiconducting films.

An Overview of Copper Sputtering Target

Copper sputtering targets, as part of vacuum coating materials, are widely applied in tool coating, optics coating, solar coating, and etc.  Copper targets can be put together with metallic copper because they are essentially the same–composed by Cu atoms.

Development of Copper

Copper is one of the earliest metals discovered by mankind and the first metal that humans began to use. Copper beads made of natural copper excavated by archaeologists in northern Iraq are supposed to have been more than 10,000 years old. Methods for refining copper from its ores were discovered around 5000BC and a 1000 or so years later it was being used in pottery in North Africa.

In modern industry, copper was widely used in the power and electronics industries. By the 1960s, copper used in these two industries accounted for 28%. By 1997, these two industries were still the main areas of copper consumption, accounting for Than 25%. Later, copper was widely used in electrical, light industry, machinery manufacturing, construction industry, transportation, and other fields. As far as America is concerned, copper is second only to aluminum in the consumption of non-ferrous materials. Copper has excellent performance and is easy to recycle and recycle. At present, there are already relatively complete recycled copper recycling systems in developed countries. For example, the output of recycled copper in the United States accounts for 60% of the total output, and Germany accounts for 80%.

Copper Sputtering Target Property

Copper is a chemical metal element with the symbol Cu. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orange color. Copper is used as a conductor of heat and electricity, as a building material, and as a constituent of various metal alloys, such as sterling silver used in jewelry, cupronickel used to make marine hardware and coins, and constantan used in strain gauges and thermocouples for temperature measurement.

Material Type Copper
Symbol Cu
Color/Appearance Copper, Metallic
Melting Point 1,083 ℃
Density 8.96 g/cm3
Sputter DC
Type of Bond Indium, Elastomer
Comments Adhesion poor. Use interlayer (Cr). Evaporates using any source material.

From Metal Copper to Copper Sputter Target

The copper sputtering target is a kind of copper product made of the metal copper, and it is used in the sputter coating to produce copper thin film. Simply speaking, there are two methods to make copper sputtering target from metal copper.

Casting: melt the raw material of a certain distribution ratio, pour the alloy solution into a mold to form an ingot, and finally machine it to become a sputtering target. The method is smelted and cast in a vacuum.

Powder metallurgy: melt the raw material of a certain distribution ratio, cast it into an ingot and then pulverize it, isostatically press the powder, and then sintering it at a high temperature to finally form a target.


Powder metallurgy process
Powder metallurgy process

Basic Requirement of Copper SputterTarget

In general, when measuring whether the sputtering target meets the primary requirements, one would consider the following indicators:

Purity: Purity has a great influence on the performance of the film produced by sputter coating. Taking copper target as an example, the higher the purity is, the better the corrosion resistance and electrical and optical properties of the sputtered film are.

Impurity content: The impurities in the solid of the target material and the oxygen and water vapor in the stoma are the main pollution sources of the deposition film. Targets for different applications have different requirements of their impurity contents.

Density: The density of the target not only affects the sputtering rate but also affects the electrical and optical properties of the film. Thus, in order to reduce pores in the solids of the target and improve the properties of the sputtered film, the target is usually required to have a higher density.

Grain size and grain size distribution: For the same target, the sputtering rate of the fine-grained target is faster than that of the coarse-grained target; and the thickness of the target sputter-deposited film with a smaller difference in grain size (distributed uniformly) is more uniform.

Information provided by SAM Sputter Targets.

Guide Book: Sputtering Targets Preparation, Cleaning, Installation and Packing

Preparation before using the target

It is very important to keep the vacuum chamber clean. Residues formed during target sputtering collect moisture and other contaminants, directly affecting the success rate of vacuum coating. If the sputtering chamber is not clean enough, the sputter gun and the sputtering target will often short-circuit or exceed the target arc to discharge, filming surface roughness and chemical impurities. In addition to the vacuum chamber, the dark area shield, cavity walls and adjacent surfaces need to be kept clean. When cleaning the vacuum chamber, we recommend using a glass ball to blast the dirty parts, while using compressed air to remove spilled residue from the periphery of the cavity, and then gently polishing the surface with alumina impregnated sandpaper. After polishing, wash with alcohol, acetone and deionized water. It is recommended to use an industrial vacuum cleaner for auxiliary cleaning.

In addition, in order to ensure coating characteristics, it is also necessary to wash and dry the sputtering gas (argon or oxygen). After the substrate is placed in the sputtering chamber, air needs to be extracted to achieve the vacuum state required for the process.

When using the target, wear clean protective gloves and avoid direct contact with the target.

Target cleaning

The purpose of cleaning the sputtering target is to remove any dust or dirt that may be present on the target surface. Metal sputtering targets can be cleaned in four steps:

In the first step, the target is wiped with a soft, lint-free cloth soaked in acetone;

The second step is to clean the target with alcohol;

The third step is to wash the target with deionized water;

In the fourth step, the target was placed in an oven and dried at 100 degrees Celsius for 30 minutes.

For oxide ceramic sputtering targets, it is recommended to use a “langue-free cloth” for cleaning. After removing the contaminated area, the target is flushed with high pressure, low moisture argon to remove any contaminating particles that may create an arc in the sputtering system.

Target cleaning

Target installation

During target installation, it is important to ensure a good thermal connection between the target and the stabilizing wall of the sputter gun. If the degree of warpage of the stave or backing plate is severe, the thermal conductivity of the target will be greatly affected, resulting in heat not being dissipated during the sputtering process, eventually leading to cracking of the target.

Target packaging and transportation

All targets should be packaged in a vacuum-sealed plastic bag with a moisture barrier. The outer packaging is usually a wooden box with an anti-collision layer around it to protect the target and rear targets from damage during transportation and storage.

For more information, please visit https://www.sputtertargets.net/.

Introduction to Two Important Vacuum Coating Methods

In today’s electronics industry, many electronic components are manufactured using a vacuum coating process. Vacuum coating has become an indispensable technology for the manufacture of electronic components. The current vacuum coating technology is to evaporate and sputter a metal or alloy in a vacuum to deposit it on a substrate. Vacuum evaporation and magnetron sputtering coating are two main vacuum coating technologies.

Vacuum evaporation


In 1857, Michael Faraday first proposed the basic principle of vacuum evaporation. Later, in the 1930s, the oil diffusion vacuum pump was put into practical use, and it was mainly used to make the lens anti-reflection film. During the Second World War, the demand for materials from other optical machines increased, and vacuum evaporation also developed rapidly.


In a vacuum state, the evaporation pellets in the evaporation vessel is heated to cause atoms or molecules to escape and deposit on the surface of the evaporation material to form a solid film. Depending on the type of vapor deposition material or substrate, it can be classified into heating methods such as resistance heating, electron beam, high-cycle induction, and laser. The vapor deposition materials include metal evaporation materials such as aluminum, lead, gold, silver, platinum, and nickel, and materials capable of producing optical properties, and oxides and fluorides such as SiO2, TiO2, ZrO2, and MgF2 are mainly used. In addition to metal, vapor deposition can be used for resin and glass, and in recent years, continuous paper has also become vapor-depositable.


The device is simple and easy to operate; the film formation rate is fast and the efficiency is high.


The thickness uniformity of the film is not easy to control, the evaporation container has hidden dangers, the process repeatability is not good, and the adhesion is not high.

Magnetron sputtering coating


As a very effective thin film deposition method, magnetron sputtering technology has been widely and successfully applied in many fields, especially in the fields of microelectronics, optical films and material surface treatment, for thin film deposition and surface coating preparation. In 1852, Grove first described the physical phenomenon of sputtering. In the 1940s, sputtering technology began to be applied and developed as a deposition coating method. With the rapid rise of the semiconductor industry in the 1960s, this technology was widely used and widely used in the integrated circuit production process for depositing metal electrode layers of transistors in integrated circuits. The emergence and development of magnetron sputtering technology, and the use of reflective layers for CD production in the 1980s, the field of application of magnetron sputtering technology has been greatly expanded, and gradually become a common means of manufacturing many products, and in the last ten years, a series of new sputtering techniques were developed.


Electrons accelerate to the substrate under the action of an electric field. In this process, electrons collide with argon atoms to ionize a large amount of argon ions and electrons. Under the action of an electric field, argon ions accelerate the bombardment of the sputtering target, and sputter a large number of target atoms, and the target atoms are deposited on the surface of the substrate to form a film.


The process repeatability is good, the film has high purity, uniform film thickness and good adhesion.


The structure of the device is complicated, and once the sputtering target penetrates, the entire target is scrapped, so the utilization rate of the target is low. Using rotatory sputtering target can increase the utilization of the target.

Please visit https://www.sputtertargets.net/ for more information.

How to Correctly Use the Sputter Coater Target (Precautions During The Sputtering Process)

Sputter coater targets have high requirements during use, requiring not only purity, size, and even grain size uniformity. These high requirements make us pay more attention when using sputtering targets. Let’s take a look at the five points of use of the sputtering coater target during use.

  1. Sputter preparation

It is very important to keep the vacuum chamber and the sputtering system clean. Any residue formed by lubricating oil and dust, as well as pre-coating, will accumulate moisture and other contaminants, directly increasing the possibility of film failure. Apart from it, the unclean sputtering chambers, sputter guns, and sputtering targets will also cause system short circuits, target arcing and rough surface formation.

In order to maintain the composition characteristics of the coating, the sputtering gas (argon or oxygen) must be cleaned and dried. After the substrate is placed in the sputtering chamber, the air needs to be extracted to achieve the vacuum level required by the process.

  1. Target cleaning

The purpose of target cleaning is the same as the first point in order to remove dust or dirt that may be present on the surface of the target and keep it clean.

  1. Target installation

The most important precaution during target installation is to ensure a good thermal connection between the target and the stabilizing wall of the sputter gun. If the warp of the cooling stave or backing plate is severe, it may cause cracking or bending of the target during installation. In this way, the thermal conductivity of the backing plate to the target is greatly affected, resulting in the inability to dissipate heat during the sputtering process, which eventually causes the target to crack or off.

  1. Short circuit and seal check

After the target is installed in the sputtering machine, it is necessary to inspect the circuit condition and seal of the cathode. It is recommended to judge whether there is a short circuit in the cathode by observing the way the resistance meter shakes. After determining that there is no short circuit in the cathode, water can be passed to the cathode to determine if there is water leakage.

  1. Target pre-sputtering

It is recommended to use pure argon for target pre-sputtering, which can help clean the surface of the target. When the sputter coating target is pre-sputtered, it is recommended to increase the sputtering power slowly. The power-increasing rate of the ceramic target is recommended to be 1.5 Wh/cm2, and the pre-sputtering speed of the metal sputter coater target materials can be 1.8 Wh/cm2 with a reasonable power increase rate compared to the ceramic target block.

For more information, please visit https://www.sputtertargets.net/.

Reliable Sputtering Target Manufacturer: Stanford Advanced Materials

Part of SAM


SAM Sputter



Stanford Advanced Materials (SAM) is a global supplier of a series of pure metals, alloys, ceramics and minerals such as oxides, chlorides, sulfides, oxysalts, etc. SAM Sputter Targets is a division of Stanford Advanced Materials, which specializes in manufacturing vacuum coating materials such as sputtering targets and evaporating pellets.

History of SAM

Stanford Advanced Materials was founded in 1994 and now has a history of 25 years.

SAM initially began supplying high-quality rare earth products to assist our customers in research and development (R&D). To meet the growing demand for rare earth products and other materials, SAM now offers sputtering materials not only for our R&D customers but also for manufacturers in the ceramics, metallurgical and electronics industries.

SAM supplies technology-grade materials to the industry and provides research institutions with high-purity chemicals (up to 99.99999%).

Types of sputtering target-planar-rotatory

Products of SAM

SAM Sputter Targets is your reliable sputtering target manufacturer. SAM has long been committed to providing customers with high quality and reliable sputtering targets at very competitive prices.

Because we understand the importance of reliable and consistent materials to our customers’ R&D and production needs, we have established a strong relationship with our manufacturers.

By regularly visiting our manufacturers and talking to their management, production and quality control engineers and workers on the production line about the quality we seek, we have created truly effective partnerships. These valuable friendships built over the years have enabled us to deliver consistently high quality products to our global customers.

SAM’s motto is “We not only provide products, we also provide satisfactory service.” We believe that you will find SAM one of your favorite sputtering target suppliers.

What SAM Sells:

Alloy Sputtering Targets

Pure Metal Sputtering Targets

Oxide Ceramic Sputtering Targets

Planar Sputtering Targets

Rotatory Sputtering Targets

Click to see our full Product Categories.

For more information, you can contact us by email at target@samaterials.com or by calling (949) 407-8904. You can also visit our website at www.sputtertargets.net for information about our products, services, pricing and news.

Physical Vapor Deposition: Sputter Coating & Evaporation

Physical vapor deposition processes use vacuum technology to create a sub-atmospheric pressure environment and an atomic or molecular condensable vapor source (from a solid or liquid surface) to deposit thin films and coatings. Sputtering deposition and vacuum evaporation are among the more well known.

physical vapor deposition sputtering evaporation

Sputtering deposition

The sputtering deposition is an etching process that alters the physical properties of a surface. In this process, a gas plasma discharge is set up between two electrodes: a cathode plating material (the sputter coater targets) and an anode material (the substrate). The film made by sputter coating are thin, ranging from 0.00005 – 0.01 mm. Chromium, titanium, aluminum, copper, molybdenum, tungsten, gold, and silver are typical sputter coating targets.

Sputter coated films are used routinely in decorative applications such as watchbands, eyeglasses, and jewelry. Also, the electronics industry relies on heavily sputtered coatings and films, such as thin film wiring on chips and recording heads as well as magnetic and magneto-optic recording media. Companies also use sputter deposition to produce reflective films for large pieces of architectural glass used in the automotive industry. Compared to other deposition processes, sputter deposition is relatively inexpensive.

vacuum coating

Vacuum Evaporation

The vacuum evaporation is a process of reducing the wastewater volume through a method that consists of concentrating a solution by eliminating the solvent by boiling. In this case, it is performed at a pressure lower than atmospheric pressure. Thus, the boiling temperature is much lower than that at atmospheric pressure, thereby resulting in notable energy savings. The basic components of this process consist of: evaporation pellets,  heat-exchanger, vacuum, vapor separator, and condenser.

Vacuum evaporation is used in the semiconductor, microelectronics, and optical industries and in this context is a process of depositing thin films of material onto surfaces. High-purity films can be obtained from a source evaporation material with high purity. The source of the material that is going to be vaporized onto the substrate can be a solid in any shape or form (usually pellets). The versatility of this method trumps other deposition processes. Also, when the deposition is not desired, masks are utilized to define the areas on the substrate for control purposes.

Information from Stanford Advanced Materials. Please visit https://www.sputtertargets.net/ for more information.

Pure Metal Sputtering Target: Silver Sputter Target

About Pure Metal Element Silver

Siver is a very malleable metallic chemical element with atomic number 47 that is capable of a high degree of polish, has the highest thermal and electric conductivity of any substance. Silver sputtering target is used as decorative coatings and antibiotic coating in medical devices.

Silver Sputtering Target Specification

SAM Sputter Taget

Product Silver Sputtering Target
Brand Stanford Advanced Materials
Category Pure Metal Sputtering Target
Material Type Silver
Symbol Ag
Atomic Number 47
Color/Appearance Silver, Metallic
Melting Point 962 °C
Theoretical Density 10.5 g/cc

Available Sputtering Target Dimensions

A comprehensive range of sizes of SAM’s sputtering targets are available to accommodate the requirements of most popular deposition tools.

silver sputtering target different dimensions

  • Disk targets, column targets, step wafer targets, plate targets
  • Rectangular targets, slice targets, step rectangular targets
  • Tubular targets / rotation sputtering target

Available Silver Sputter Target Purity

99.9% (3N), 99.95% (3N5), 99.99% (4N), 99.999% (5N), 99.9995% (5N5), 99.9999% (6N)

Silver Sputtering Target Applications

Physical vapor deposition (PVD) of thin films, laser ablation deposition (PLD), magnetron sputtering for semiconductor, display, LED and photovoltaic devices.target bonding

Each target can be designed to fit customer specified backing plates or cups with either indium/tin or silver epoxy bonding.  Bonding service is available on oxygen free copper backing plate.

Please visit https://www.sputtertargets.net/ for more information.

Related: Silver Sputtering Target Price

Working Mechanism of Pulsed Laser Deposition

Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique where a high-power pulsed laser beam is focused inside a vacuum chamber to strike a target of the material that is to be deposited.  Although the equipment of pulsed laser deposition (PLD) system is simple, its working mechanism is related to many complicated physical phenomena. It includes all physical interactions between the laser and the substance when the high-energy pulsed radiation strikes the solid sputtering target, the formation of plasma plumes and the transfer of the molten material through the plasma plume to the surface of the heated substrate. Therefore, PLD can generally be divided into the following three stages:

Interaction between laser radiation and the sputtering target

In this stage, the laser beam is focused on the surface of the target materials. When sufficient high energy flux and short pulse width are achieved, all elements of the target surface are rapidly heated to the evaporation temperature. At this point, the material in the target will be sputtered from the target. The instantaneous melting rate of the target is highly dependent on the flow of laser light onto the target. The melting mechanism involves many complex physical phenomena such as collisions, heat, excitation with electrons, delamination, and fluid mechanics.

Dynamics of molten matter

In the second stage, according to the law of aerodynamics, the sputtered particles have a tendency to move toward the substrate. The space thickness varies with the function cosn θ, and n>>1. The area of the laser spot and the temperature of the plasma have an important influence on the uniformity of the deposited film. The distance between the target and the substrate is another factor that affects the angular extent of the molten material. It has also been found that placing a baffle close to the substrate narrows the angular extent.

Deposition of molten material on the substrate

The third stage is the key to determining the quality of the film. The high-energy nuclides emitted hit the surface of the substrate and may cause various damages to the substrate. The high energy nuclide sputters some of the atoms on the surface, and a collision zone is established between the incident stream and the sputtered atoms. The film is formed immediately after the formation of this thermal energy zone (collision zone), which is the best place to condense particles. As long as the condensation rate is higher than the release rate of the sputtered particles, the heat balance condition can be quickly reached, and the film can be formed on the surface of the substrate due to the weakened flow of the molten particles.

The original text is from https://samsputtertargets.blogspot.com/.

Please visit https://www.sputtertargets.net/ for more information.