Physical Vapor Deposition: Sputter Coating & Evaporation

Physical vapor deposition processes use vacuum technology to create a sub-atmospheric pressure environment and an atomic or molecular condensable vapor source (from a solid or liquid surface) to deposit thin films and coatings. Sputtering deposition and vacuum evaporation are among the more well known.

physical vapor deposition sputtering evaporation

Sputtering deposition

The sputtering deposition is an etching process that alters the physical properties of a surface. In this process, a gas plasma discharge is set up between two electrodes: a cathode plating material (the sputter coater targets) and an anode material (the substrate). The film made by sputter coating are thin, ranging from 0.00005 – 0.01 mm. Chromium, titanium, aluminum, copper, molybdenum, tungsten, gold, and silver are typical sputter coating targets.

Sputter coated films are used routinely in decorative applications such as watchbands, eyeglasses, and jewelry. Also, the electronics industry relies on heavily sputtered coatings and films, such as thin film wiring on chips and recording heads as well as magnetic and magneto-optic recording media. Companies also use sputter deposition to produce reflective films for large pieces of architectural glass used in the automotive industry. Compared to other deposition processes, sputter deposition is relatively inexpensive.

vacuum coating

Vacuum Evaporation

The vacuum evaporation is a process of reducing the wastewater volume through a method that consists of concentrating a solution by eliminating the solvent by boiling. In this case, it is performed at a pressure lower than atmospheric pressure. Thus, the boiling temperature is much lower than that at atmospheric pressure, thereby resulting in notable energy savings. The basic components of this process consist of: evaporation pellets,  heat-exchanger, vacuum, vapor separator, and condenser.

Vacuum evaporation is used in the semiconductor, microelectronics, and optical industries and in this context is a process of depositing thin films of material onto surfaces. High-purity films can be obtained from a source evaporation material with high purity. The source of the material that is going to be vaporized onto the substrate can be a solid in any shape or form (usually pellets). The versatility of this method trumps other deposition processes. Also, when the deposition is not desired, masks are utilized to define the areas on the substrate for control purposes.

Information from Stanford Advanced Materials. Please visit https://www.sputtertargets.net/ for more information.

Introduction to Physical Vapor Deposition Technologies

Thin Film Deposition

Thin film deposition technology refers to the preparation of thin films on the surface of materials used in the fields of machinery, electronics, semiconductors, optics, aviation, transportation and etc., in order to impart certain properties (such as heat resistance, wear resistance, corrosion resistance, decoration, etc.) to these materials.

The two most common forms of thin film deposition techniques are physical vapor deposition (PVD) and chemical vapor deposition (PVD).

Physical Vapor Deposition —PVD

PVD is a process that achieves the transformation of the atoms from the source materials to the substrate to deposit a film by physical mechanisms such as thermal evaporation or sputtering.

PVD includes evaporation, sputtering and ion plating.

Evaporation

Evaporation is a common method of thin-film deposition. It is also called vacuum evaporation because the source material is evaporated in a vacuum. The vacuum allows the vapored particles to travel directly to the substrate, where they condense and deposit to form a thin film.

Evaporation (PVD)
Evaporation (PVD)

Sputtering

Sputtering is a physical vapor deposition (PVD) method of thin film deposition. It is a process whereby particles are ejected from a solid target material (sputtering target) due to the bombardment of the target by energetic particles.

Sputtering (PVD)
Sputtering (PVD)

Ion Plating

Ion plating is a physical vapor deposition (PVD) process which uses a concurrent or periodic bombardment of the substrate, and deposits film by atomic-sized energetic particles.

Ion Plating (PVD)
Ion Plating (PVD)

Characteristics of the main physical vapor deposition method

Among the above three methods, although Ion plating’s film adhesion and density are better, due to technical limitations, the other two methods (evaporation and sputtering) are currently more widely used. In general, sputtering is the best PVD technology.

Stanford Advanced Materials (SAM) is one of the most specialized sputtering targets manufacturers, please visit https://www.sputtertargets.net/ for more information.

What is Extreme High Speed Laser Material Deposition(EHLA)?

The German research institute Fraunhofer Institute for Laser Technology has developed a new metal part coating process called Extreme High Speed Laser Material Deposition (EHLA).

The coating is processed by a laser to form a molten pool with a small amount of powder added. The metal powder is then deposited by laser beam and movement between the components to form a thin, uniform coating. What makes EHLA different from other deposition processes is that the powder melts completely before it is applied to the surface of the part. This process can effectively reduce resource consumption by introducing approximately 90% of the material into the correct area, while other processes can only achieve 50%.

Extreme High Speed Laser Material Deposition

But the most outstanding part of the process is its amazing speed. With the EHLA process, coating processing can be performed at a speed 100 to 250 times higher than conventional laser material deposition speeds. Moreover, it has almost no heat during processing and can be used for heat-sensitive component coating processing. In addition, it is also possible to perform tandem coating processing. In the future, it will be possible for products to be protected from wear and tear during their life cycle.

Researchers say the new process protects metal parts from corrosion and wear without the need to deposit chromium that pollutes the environment. EHLA is environmentally friendly because it does not use chemicals. In addition, the coating adheres to the substrate in a material-locking manner to prevent peeling. And the process is also compatible with other coatings such as iron, nickel and cobalt based alloys. With these advantages, EHLA presents a promising application prospect.

Stanford Advanced Materials (SAM) Corporation is a global supplier of various sputtering targets such as metals, alloys, oxides, ceramic materials. If you are interested, please visit our website https://www.sputtertargets.net/ for more information.

Advantages and Disadvantages of Pulsed Laser Deposition (PLD)

Pulsed laser deposition is one of the methods of thin film preparation, and several others include chemical vapor deposition, material sputtering, and etc. Pulsed Laser Deposition (PLD), also known as Pulsed Laser Ablation (PLA), uses a laser to bombard the surface of the target, raising its surface temperature and further producing high temperature and high pressure plasma ( T>104K), depositing on different substrates to form a film.

Advantages

1 It is easy to obtain multi- component film that is of the desired stoichiometric ratio by PLD.

2 It has high deposition rate, short test period and low substrate temperature requirements. Films prepared by PLD are uniform.

3 The process is simple and flexible with great development potential and great compatibility.

4 Process parameters can be arbitrarily adjusted, and there is no limit to the type of PLD targets. Multi-target components are flexible, and it is easy to prepare multilayer films and heterojunctions.

5 It is easy to clean and can prepare a variety of thin film materials.

6 PLD uses UV pulsed laser of high photon capability and high energy density as the energy source for plasma generation, so it is non-polluting and easy to control.

 Pulsed laser deposition

Disadvantages

1 For quite a number of materials, there are molten small particles or target fragments in the deposited film, which are sputtered during the laser-induced explosion. The presence of these particles greatly reduces the quality of the film.

2 The feasibility of laser method for large area deposition has not been proved yet.

3 Average deposition rate of PLD is slow.

4 In view of the cost and deposition scale of laser film preparation equipment, it seems that PLD is only suitable for the development of high-tech fields such as microelectronics, sensor technology, optical technology and new material films.

 

Stanford Advanced Materials (SAM) Corporation is a global supplier of various sputtering targets such as metals, alloys, oxides, ceramic materials. Please visit our website https://www.sputtertargets.net for more information.