Lithium Battery Technology-An Overview

What is a lithium battery?

Literally speaking, some people may think that lithium batteries are only made of metallic lithium. In fact, lithium battery is a relatively broad concept, which can be roughly divided into two categories: lithium metal batteries and lithium ion batteries. Lithium batteries generally refer to batteries using a lithium metal or a lithium alloy as a negative electrode and utilize a non-aqueous electrolyte. For example, in renewable energy applications, the main chemical of lithium batteries is lithium iron phosphate (LiFePO4), which has good safety, good thermal stability, high rated current and long cycle life.

Lithium battery2

Advantages

Compared with traditional batteries such as lead acid, nickel chrome and nickel hydrogen, lithium batteries do not produce harmful heavy metal elements such as lead, mercury and cadmium. Their electrolytes are organic solvents and lithium salts, most of which are non-toxic or low-toxic. Therefore, the pollution is relatively slight. There is also no risk of exposure to corrosive electrolytes such as sulfuric acid or potassium hydroxide. In most cases, lithium batteries do not present an explosion hazard even when stored in confined areas, and their well-designed systems do not require active cooling or ventilation. In addition, lithium batteries have an extremely long cycle life, and some manufacturers can even guarantee a battery life of up to 10,000 times. In general, lithium batteries are a perfect energy storage solution.

Application

With the development of microelectronics technology in the twentieth century, the number of miniaturized devices is increasing, and high requirements are placed on the power supplies. Lithium batteries have entered a large-scale practical stage. The earliest is the primary lithium battery used in cardiac pacemakers. The kind of battery has a very low self-discharge rate, and the discharge voltage is very gentle, making the pacemaker expected to be implanted in the human body for a long time. Lithium-manganese batteries generally have a nominal voltage higher than 3.0 volts, and are more suitable for using as integrated circuit power supplies, which are widely used in computers, calculators, and watches. Lithium-ion batteries are widely used in mobile phones, notebook computers, power tools, electric vehicles, street lamp backup power supplies, navigation lights, and small household appliances.

Stanford Advanced Materials (SAM) Corporation is a global supplier of various sputtering targets such as metals, alloys, oxides, ceramic materials. We provide high purity of Lithium pure metal as well as sputtering targets and evaporation materials, please visit our website https://www.sputtertargets.net for more information.

Advantages and Disadvantages of Pulsed Laser Deposition (PLD)

Pulsed laser deposition is one of the methods of thin film preparation, and several others include chemical vapor deposition, material sputtering, and etc. Pulsed Laser Deposition (PLD), also known as Pulsed Laser Ablation (PLA), uses a laser to bombard the surface of the target, raising its surface temperature and further producing high temperature and high pressure plasma ( T>104K), depositing on different substrates to form a film.

Advantages

1 It is easy to obtain multi- component film that is of the desired stoichiometric ratio by PLD.

2 It has high deposition rate, short test period and low substrate temperature requirements. Films prepared by PLD are uniform.

3 The process is simple and flexible with great development potential and great compatibility.

4 Process parameters can be arbitrarily adjusted, and there is no limit to the type of PLD targets. Multi-target components are flexible, and it is easy to prepare multilayer films and heterojunctions.

5 It is easy to clean and can prepare a variety of thin film materials.

6 PLD uses UV pulsed laser of high photon capability and high energy density as the energy source for plasma generation, so it is non-polluting and easy to control.

 Pulsed laser deposition

Disadvantages

1 For quite a number of materials, there are molten small particles or target fragments in the deposited film, which are sputtered during the laser-induced explosion. The presence of these particles greatly reduces the quality of the film.

2 The feasibility of laser method for large area deposition has not been proved yet.

3 Average deposition rate of PLD is slow.

4 In view of the cost and deposition scale of laser film preparation equipment, it seems that PLD is only suitable for the development of high-tech fields such as microelectronics, sensor technology, optical technology and new material films.

 

Stanford Advanced Materials (SAM) Corporation is a global supplier of various sputtering targets such as metals, alloys, oxides, ceramic materials. Please visit our website https://www.sputtertargets.net for more information.